9. C. A. Bennett and R. R. Patty, "Thermal wave interferometry: a potential application of the photoacoustic effect," App1. Opt., 21, No. 1, 49-54 (1982).

CHOICE OF THE INTERMOLECULAR COLLISION FREQUENCY FOR MODEL
KINETIC EQUATIONS IN THE THEORY OF MOTION OF A RAREFIED GAS
E. V. Kalinin, v. V. Kalinin,

UDC $533.722+533.6 .011 .8$
B. T. Porodnov, and V. D. Seleznev

The effect of the intermolecular collision frequency on the nonisothermal motion of a rarefied gas is considered.

1. The motion of a one-component rarefied gas in a channel has been theoretically treated using various methods based on the Boltzmann equation or models derivable from it. A fairly complete review of this approach can be found in [1-4]. The problem has been solved using the BGK equations [1-3], the ellipsoidal statistical model (EL model) of [5, 6], and the S model of $[7,8]$. The advantage of third-order models, such as the EL and S models, compared to the BGK model is that in the approach to a continuous medium, the former give correct expressions for the stress tensor and heat-flux density [9].

The general form of the linearized kinetic equation for the third-order models is given in [10]. In the solution of the equation, one must choose the intermolecular collision frequency γ. The choice for γ is fairly arbitrary [9, 10], but at the same time it should be done such that the solution obtained from the model equation correspond to that of the Boltzmann equation.

In $[11,12$] the effect of the choice for the intermolecular collision frequency on the solutions for Couetteflow and the structure of shock waves was studied using a method based on the model equations proposed by Gross and Jackson [13].

In the present paper, we study the heat and mass transport of a rarefied gas moving in a plane channel under temperature and pressure gradients using the third-order model kinetic equation [10] for different values of the frequency γ. We then study the effect of the value γ on the solution over the whole range of Knudsen numbers.
2. We consider motion of a monoatomic one-component rarefied gas in a channel formed by two infinite parallel plates ($x= \pm d / 2$) and induced by pressure and temperature gradients along the channel, where the z axis is taken along the channel. We consider the state of the gas to be weakly perturbed and therefore the distribution function can be written in the form

$$
\begin{align*}
& f(\vec{r}, \vec{v})=f_{0}(z, \vec{v})[1+h(x, \vec{v})],\|h(x, \vec{v})\| \ll 1, \tag{1}\\
& f_{0}(z, \vec{v})=n(z)\left(\frac{m}{2 \pi k T(z)}\right)^{3 / 2} \exp \left(-\frac{m v^{2}}{2 k T(z)}\right),
\end{align*}
$$

where $\mathfrak{n}(z), T(z)$, and m are, respectively, the number density, temperature of the gas, and mass of the molecule. The function $h(x, \vec{v})$ is the perturbation.

We write the third-order linearized model kinetic equation in the form [7, 10]
$v_{x} \frac{\partial h}{\partial x}+v_{z}\left[v+\tau\left(c^{2}-\frac{5}{2}\right)\right]=-\gamma h+2 \gamma u_{z} c_{z}+4 P_{x z}\left(\gamma-v^{(3)}+v^{(4)}\right) c_{x} c_{z}+\frac{8}{5} q_{z}\left(\gamma-v^{(5)}+v^{(6)}\right)\left(c^{2}-\frac{5}{2}\right) c_{z}^{(2)}$ where the macroscopic quantities, in correspondence with their kinetic definitions, can be written in the form

Sverdlovsk Engineering Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 46, No. 4, pp. 577-586, April, 1984. Original article submitted December 8, 1982.

$$
\begin{gather*}
{\left[\begin{array}{c}
u_{z} \\
P_{x z} \\
q_{z}
\end{array}\right]=\pi^{-s / 2} \int\left[\begin{array}{c}
c_{z} \\
c_{x} c_{z} \\
\frac{1}{2}\left(c^{2}-\frac{5}{2}\right) c_{z}
\end{array}\right] h e^{-\sigma^{0}} \overrightarrow{d c},} \tag{3}\\
\vec{c}=\overrightarrow{\beta v}, \beta=\left(\frac{m}{2 k T_{0}}\right)^{1 / 2}, \quad v=\left(\frac{d}{P}\right) \frac{d P}{d z}, \\
\tau=\left(\frac{d}{T}\right) \frac{d T}{d z}, T_{0}=T(z=0) .
\end{gather*}
$$

Explicit forms for $v^{(3)}, v^{(4)}, v^{(5)}, v^{(6)}$ are given in [10]:

$$
\begin{align*}
v^{(4)}-v^{(3)} & =-\frac{8}{5} n \Omega^{(22)} \tag{4}\\
v^{(8)}-v^{(5)} & =-\frac{16}{15} n \Omega^{(22)} .
\end{align*}
$$

Because of the linearity of the problem and the smallness of the perturbation h, one can write

$$
\begin{equation*}
h=h^{P} v+h^{T} \tau . \tag{5}
\end{equation*}
$$

Following [7], we transform the kinetic equation (2) into a system of three linear integral equations for the heat flux density q_{z}, stress tensor $P_{x z}$, and macroscopic gas velocity u_{z}

$$
\begin{equation*}
\vec{\psi}=\vec{A} \vec{\psi}+\vec{B} . \tag{6}
\end{equation*}
$$

Where the following notation is used in (6):

$$
\begin{align*}
& A \vec{\psi}=\frac{\delta}{\sqrt{\pi}} \int_{-1 / 2}^{+1 / 2} D \vec{\psi} d s, \quad \vec{B}=-\frac{1}{2 \sqrt{\pi}} \int_{-1 / 2}^{+1 / 2} \vec{E} d s, \\
& D=\left[\begin{array}{ccc}
J_{-1} & 2\left(1-s_{0}\right) J_{0} \operatorname{sign}(x-s) & \frac{4}{5}\left(1-\frac{2}{3} s_{0}\right)\left(J_{1}-\frac{1}{2} J_{-1}\right) \\
J_{0} \operatorname{sign}(x-s) & 2\left(1-s_{0}\right) J_{1} & \frac{4}{5}\left(1-\frac{2}{3} s_{0}\right)\left(J_{2}-\frac{1}{2} J_{0}\right) \operatorname{sign}(x-s) \\
\frac{1}{2}\left(J_{1}-\frac{1}{2} J_{-1}\right) & \left(1-s_{0}\right)\left(J_{2}-\frac{1}{2} J_{0}\right) \operatorname{sign}(x-s) & \frac{2}{5}\left(1-\frac{2}{3} s_{0}\right)\left(J_{3}-J_{1}+\frac{9}{4} J_{-1}\right)
\end{array}\right], \tag{7}\\
& \vec{\psi}=\left[\begin{array}{c}
u_{z} \\
P_{x z} \\
q_{z}
\end{array}\right] \quad \vec{E}=\left[\begin{array}{c}
J_{-1} v+\left(J_{1}-\frac{1}{2} J_{-1}\right) \tau \\
J_{0} \operatorname{sign}(x-s) v+\left(J_{2}-\frac{1}{2} J_{0}\right) \operatorname{sign}(x-s) \tau \\
\frac{1}{2}\left(J_{1}-\frac{1}{2} J_{-1}\right) v+\frac{1}{2}\left(J_{3} \rightarrow J_{1}+\frac{9}{4} J_{-1}\right) \tau
\end{array}\right], \\
& \delta=\beta d \gamma, \quad s_{0}=\frac{\gamma_{\mathrm{BGK}}}{\gamma}=\frac{8 n \Omega^{(22)}}{5 \gamma}, \\
& J_{n}(t)=\int_{0}^{\infty} c^{n} \exp \left(-c^{2}-\frac{t}{c}\right) d c .
\end{align*}
$$

The argument of the functions J_{n}, which have been studied in detail in [14], is ($\delta / \mathrm{x}-$ s). Information on these functions can be found in [15].

The system of equations (6) determine the local values of the macroscopic gas velocity, stress tensor, and heat flux density. With the help of (5), they divide into two sets of integral equations, one of which describes the motion of the gas under a temperature gradient and the other under a pressure gradient. In practice we are interested in the number flux I_{N} and heat flux I_{q} averaged over the channel cross section:

$$
\begin{align*}
& I_{q}=\frac{2 P_{0}}{\beta} \int_{-1 / 2}^{+1 / 2} q_{z}(x) d x=L_{q q} X_{q}+L_{q N} X_{N}, \tag{8}\\
& I_{N}=\frac{n_{0}}{\beta} \int_{-1 / 2}^{+1 / 2} u_{z}(x) d x=L_{N q} X_{q}+L_{N N} X_{N} .
\end{align*}
$$

Then the macroscopic fluxes corresponding to the thermodynamic forces are taken in the following form [16-18]:

$$
\begin{equation*}
X_{q}=-\frac{\tau}{T_{0}}, X_{N}=-k v . \tag{9}
\end{equation*}
$$

In (8) the off-diagonal coefficients satisfy the symmetry relation

$$
\begin{equation*}
L_{q N}=L_{N q} \tag{10}
\end{equation*}
$$

Equations (8) are next written in the convenient form

$$
\begin{align*}
& I_{q}=\frac{P_{0} T_{0}}{\beta} l_{q q} X_{q}+\frac{n_{0} T_{0}}{\beta} l_{q N} X_{N}, \tag{11}\\
& I_{N}=\frac{n_{0} T_{0}}{\beta} l_{N q} X_{q}+\frac{n_{0}}{\beta k} l_{N N} X_{N} .
\end{align*}
$$

From the equality of the coefficients (10) it follows that

$$
\begin{equation*}
l_{q N}=l_{N q} \tag{12}
\end{equation*}
$$

In (11), P_{0} and T_{0} are the pressure and temperature of the gas in the center of the channel ($z=0$) 。

Equations (6) were solved using the method of Galerkin [19] with the following approximation for $\vec{\psi}$:

$$
\tilde{\psi}=\left|\begin{array}{c}
\tilde{A}+\tilde{B} x^{2} \tag{13}\\
\tilde{C} x \\
\tilde{D}
\end{array}\right|
$$

This form for $\underset{\boldsymbol{\psi}}{\vec{\psi}}$ is correct in the continuum limit.
After solving (6) it is convenient to transform to dimensionless quantities, related to the kinetic coefficients as follows [7, 18]:

$$
\begin{gather*}
G_{p}=\frac{2 \beta k}{n_{0}} L_{N N}=2 l_{N N}, \quad G_{T}=-\frac{2 \beta}{n_{0} T_{0}} L_{N q}=-2 l_{N q} \tag{14}\\
Q_{P}=-\frac{\beta}{2 n_{0} T_{0}} L_{q N}=-\frac{1}{2} l_{q N}, Q_{T}=\frac{\beta}{2 P_{0} T_{0}} L_{q q}=\frac{1}{2} l_{q q}
\end{gather*}
$$

These quantities are convenient to use in comparisons with those of other authors. From the Onsager reciprocity relations for the off-diagonal coefficients (10) it follows that

$$
\begin{equation*}
G_{T}=4 Q_{P} \tag{15}
\end{equation*}
$$

In calculations for a specific case, the intermolecular collision frequency γ must be chosen. We considered three forms for γ :

$$
\begin{equation*}
\gamma=\frac{8}{5} n \Omega^{(22)} \tag{16}
\end{equation*}
$$

In this case we obtain from (2) the linearized S model equation of Shakhov [9, 20]. If we ignore the heat flux density q_{z} on the right-hand side of (2), we obtain the well-known BGK model equation [21]

$$
\begin{equation*}
\gamma=\frac{16}{15} n \Omega^{(22)} \tag{17}
\end{equation*}
$$

Here we obtain the linearized EL model of Holway [22].

TABLE 1. Values of the Parameter so

γ S model $[9,20]$ EL model $[22,10]$$\|$1,5 0.7742 for the hard sphere potential $0.84]$ 0.813 for the $(6-12)$ Lennard - Jones po- tential for Ar at $\mathrm{T}=300^{\circ} \mathrm{K}[25]$ 0.8740 for the $(6-12)$ Lennard - Jones po- tential for He, at $\mathrm{T}=300^{\circ} \mathrm{K}[25]$
$\gamma=\frac{8}{15} n\left(\Omega^{(22)}+\Omega^{(13)}-5 \Omega^{(12)}+\frac{35}{4} \Omega^{(11))}\right.$.

This form for γ was suggested in [10] and was used in the study of the motion of a mixture of rarefied gases [18]. Here $\Omega\left(l_{r}\right)$ are the Chapman-Cowling integrals [23] which depend on the form of the molecular interaction potential.

In the solution of the system of integral equations (6), the quantity so, determined by (7), appears explicitly. Values of s_{0} used in the present paper are given in Table 1. The data on the $\Omega\left(l_{r}\right)$ was taken from [23-25].
3. We now discuss the results for different values of γ. In doing this, it is convenient to compare the fluxes (14) taken as functions of the product $\delta_{s o \text {, rather than as }}$ functions of the rarefaction parameter δ alone. It can easily be shown that δs_{0} is inversely proportional to the Knudsen number $[6,21]$. The dependence of the fluxes G_{P}, G_{T}, Q_{p}, and Q_{T} on δ so are shown in Table 2.

It follows from comparison of the results in Tables 1 and 2 that (15) is correct for different values of so. Consequently, for any choice of δ, the Onsager reciprocity relations are satisfied for all Knudsen numbers. Also the Gp are identical to within less than 1% as a function of so if $\delta s_{0}>10$. G_{p} increases with increasing so for all δ_{0}. GT values are identical for different values of s_{0} (to less than 1%) if $\delta s_{0} \geqslant 50$. However if $\delta s_{0}<0.5$, G_{T} increases with increasing so and if $\delta s_{0}>0.5$, it decreases with increasing so. A similar dependence is observed for Q_{P}, as suggested by (15), and also for Q_{T}. Thus for $\delta s_{0}<l_{\text {, }} Q_{T}$ increases with increasing s_{0}, and for $\delta_{s_{0}}>1$ it decreases with increasing s_{0}.

From the values of $G P$ and $Q T$ in the viscous case ($\delta s_{0} \rightarrow \infty$), the viscosity η and thermal conductivity λ can be calculated as follows:

$$
\begin{gather*}
\eta=\frac{1}{12}\left(\delta s_{0}\right) \alpha_{0} \frac{1}{l_{N N}\left(\delta s_{0} \rightarrow \infty\right)}, \tag{19}\\
\lambda=2\left(\delta s_{0}\right) \alpha_{0} \beta_{0} l_{q q}\left(\delta s_{0} \rightarrow \infty\right), \tag{20}\\
\alpha_{0}=0.266949 \cdot 10^{-5} \frac{\sqrt{M T}}{\sigma^{2}} \frac{1}{\Omega^{(22) *}}, \quad \beta_{0}=8314.36 \frac{1}{M} . \tag{21}
\end{gather*}
$$

Where M is the mass of a gas molecule in a.e., σ is the scattering cross section of the molecule in \AA, and $\Omega\left(Z_{r}\right) *$ are the reduced Ω integrals [23-25].

The fact that the fluxes $\mathrm{Gp}\left(\mathrm{Q}_{\mathrm{T}}\right)$ are constant with respect to so for large dso shows that η and λ do not depend on the intermolecular collision frequency γ.

In Table 3 we show the results for the viscosities of the inert gases using (19) for the (6-12) Lennard-Jones potential as compared to values obtained in the first ChapmanEnskog approximation [25], as well as to values obtained by experiment [26] and to values recommended in [27]. The results for the thermal conductivity of the inert gases according to (20) and the (6-12) Lennard-Jones potential are compared to those obtained in the first approximation in the Chapman-Enskog method [25], and to the handbook values recommended in [27, 28] and given for comparison in Table 4.

Comparison of the values of the transport coefficients given in Tables 3 and 4 shows that our approach for calculating the kinetic coefficients for the viscous flow of a gas is correct.

TABLE 2. Fluxes $G_{P}, G_{T}, Q_{p}, Q_{T}$ as functions of $\delta s o$

δs_{0}	s_{0}				
	0,7742	0,8613	0.8740	1	1.5
G_{P}					
0,01	2,925	2,978	2,985	3,052	3,257
0,05	2,206	2,242	2,249	2,306	2,479
0,1	1,951	1,987	1,992	2,040	2,193
0,5	1,564	1,584	1,587	1,614	1,706
1	1,518	1,532	1,534	1,553	1,620
5	1,984	1,991	1,992	2,001	2,031
10	2,760	2,765	2,765	2,772	2,800
50	9,360	9,362	9,362	- 9,364	9,372
100	1,768.101	1,769.101	1,769.101	1,769.101	1,769.101
500	$8,434$	8,434	8,434	, 8,434	$8,434$
1000	$1,677 \cdot 102$	1.677.102	1,677.102	$1.677 \cdot 10^{2}$	$1,677 \cdot 10^{2}$
G_{T}					
0,0]	1,189	1,213	1,216	1,247	1.341
0,05	8,350.10-1	8,475.10-1	8,503.10-1	8,720 10^{-1}	9,386.10-1
0,1	7,052	7,162	7,178	7,325	7,820
0,5	4,634	4,624	4,623	4,619	4,659
1	3,732	3,689	3,683	3,636	3,537
5	1,658	1,636	1,633	1,603	1,508
10	9,679.10-2	9,613.10-2	9,603.10-2	9,508.10-2	9,145.10-2
50	2,185	2,182	2,182	2,179	2,165
100	1,109	1,108	1,108	1,108	1,104
500	2,243.10-3	2,243.10-3	2,243.10-3	2,243.10 0^{-3}	2,241.10 ${ }^{3}$
1000	1,123	1,123	1,123	1,123	1,123
Q_{P}					
0,01	0,9974.				
0,05	0,2974	0,3119	0,3041	0,3116	0,3353
0,1	0,1763	0,1791	0,2126 0,1795	0,21831	0,2346 0,1956
0,5	0,1158	0,1156	0,1156	0,1155	0,1165
1	0,9332. 10^{-1}	0,9221-10-1	0,9208.10-1	0,9088.10-1	0,8843.10-1
5	0,4144	0,4089	0,4082	0,4007	0,3771
10	0,2419 0.0	0,2404	0,2400	0,2378	0,2286
50	$05462 \cdot 10^{-2}$	0,5456.10-2	$0,5454 \cdot 10^{-2}$	0,5447.10-2	0,5413.10-2
100	$0_{0,2771}$	0,2769	0,2769	0,2768	$0,2760$
500	0,5608.10-3	0,5608.10-3	0,5608.10-3	0,5606.10-3	0,5604.10-3
1000	0,2809	0,2809	0,2809	0,2809	0,2807
Q_{T}					
0,01	1,614	1,643		1,684	
0,05	1,614	1,643	1,647	1,684 1,208	1,796
0,1	0,9724	0,9893	0,9915	1,013	1,083
. 0,5	0,5852	0,5899	0,5906	0,5972	0,6201
1	0,4341	0,4352	0,4354	0,4373	0,4453
5	0,1537	0,1535	0,1534	0,1532	0,1525
10	0,8479.10-1	0,8475. 10^{-1}	0,8473.10-1	0,8468.10-1	0,8447.10-1
50	0,1838	0,1837	0,1837	0,8487	0,1837
100	$0.9281 \cdot 10^{-2}$	0,9281-10-2	0,9281 $\cdot 10^{-2}$	0,9281-10-2	0,9279.10-2
500	0.1871	0,1871	0,1871	0,1871	$0,1871$
1000	$0.9366 \cdot 10^{-3}$	$0,9366 \cdot 10^{-3}$	$0,9366 \cdot 10^{-3}$	$0,9366 \cdot 10^{-3}$	$0,9366 \cdot 10^{-3}$

TABLE 3. Dynamic Viscosity for the Inert Gases, $\eta \cdot 10^{8} \mathrm{Pa-sec}$, $\mathrm{T}=300^{\circ} \mathrm{K}, \mathrm{P}=1.013 \cdot 10^{5} \mathrm{~Pa}$

Literature source	He	Ne	Ar	Kr	Xe
Eq. (19)	1986	3173	2266	2578	2354
Chapman - Enskog meth. [25]	1998	3192	2282	2594	2369
[26]	1972	3203	2272	2530	2308
$\left[27^{7}\right]$	-	3175	2275	2554	2350

When δs o is large, the following asymptotic formulas for G_{p} and G_{T} are valid:

$$
\begin{equation*}
G_{P}=\frac{\delta s_{\mathbf{0}}}{6}+\frac{\sqrt{\pi}}{2} \sigma_{P}, \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{P}=\frac{1}{2}+\frac{2}{\pi}, \tag{23}
\end{equation*}
$$

TABLE 4. Thermal Conductivities of the Inert Gases, $\lambda \cdot 10^{3}$ W (m-deg) $, T=300^{\circ} \mathrm{K}, \mathrm{P}=1.013 \cdot 10^{5} \mathrm{~Pa}$

Literature source	He	Ne	Ar	Kr	Xe
Eq. (20)	15544	4926	1780	964	562
Chapman - Enskog meth. [25]	15560	4931	1782	964	563
$[28]$	15200	4990	1770	958	569
$[27]$	-	4908	1777	951	558

Fig. 1. Indices for the TPD effect (a) and thermoeffect (b) as a function of $\log \left(\delta s_{0}\right)$: Curve 1) $s_{0}=1.5$ (EL model); curve 2) $\mathrm{s}_{0}=0.7742$; curve 3) $\mathrm{s}_{0}=1$ (S mode1).

$$
\begin{equation*}
G_{T}=\frac{A_{T}}{\delta s_{0}}, \quad A_{T}=\frac{9}{8} . \tag{24}
\end{equation*}
$$

Here σ_{P} is the Poiseuille slip constant [1] and A_{T} is the thermal siip constant [2]. Equation (22) agrees completely with earlier results using the BGK and EL models [1] and the S model $[29,30]$ for diffusive scattering of gas molecules at the walls of the channel. We note that in the numerical results for σ_{P} in [31] there is an error; in place of $\frac{1 / \pi}{2} \sigma_{p}=$ 1.0073 the value 1.0161 is given.

The thermal slip constant A_{T} is obtained as in the S model [8, 30], but differs from the value $A_{T}=0.75$ obtained in the $B G K$ model $[32,33]$. This is due to the inability of the BGK model to describe both heat and mass transport in a gas simultaneously [9].

We consider first-order cross-over effects in a rarefied gas: the thermomolecular pressure difference effect (TPD) and the thermoeffect due to a pressure gradient. According to a theorem of Prigogine on stationary states of order k [16], the following condition is satisfied for the TPD effect:

$$
\begin{equation*}
I_{N}=0 \tag{25}
\end{equation*}
$$

For thermoeffect, the analogous condition is

$$
\begin{equation*}
I_{q}=0 \tag{26}
\end{equation*}
$$

On the other hand, the TPD effect is described by the relations $[3,8,34]$

$$
\begin{equation*}
\frac{P_{1}}{P_{2}}=\left(\frac{T_{1}}{T_{2}}\right)^{\gamma_{T}}, \quad \gamma_{T}=\frac{G_{T}}{G_{P}}, \tag{27}
\end{equation*}
$$

where γ_{T} is usually called the TPD effect index.
The dependence of γT on δs_{0} for different values of s_{0} is shown in Fig. la. The maximum dispersion is observed for $\delta s_{\circ} \sim 1$ and is about 13%. For the thermoeffect, the analogous formula to (27) is

$$
\begin{equation*}
\frac{T_{1}}{T_{2}}=\left(\frac{P_{1}}{P_{2}}\right)^{x}, \quad x=\frac{Q_{P}}{Q_{T}} \tag{28}
\end{equation*}
$$

where x is the thermoeffect index. In Fig. 1 l , the dependence of x on $\delta s 0$ is shown for different values of so. The maximum dispersion is observed for $\delta s_{0} \sim 5$ and is about 9%.

In the free molecule case ($\delta s_{0} \rightarrow 0$) $\gamma_{T}=0.5$ and $x=2 / 9$. In the viscous flow regime $\left(\delta s_{0} \rightarrow \infty\right) \gamma T \rightarrow 0$ and $x=0.3$ and is independent of so.

NOTATION

d, distance between the plates; f_{0}, Maxwell distribution function; $\vec{\forall}$, velocity of gas molecules; k, Boltzmann constant; v, logarithmic pressure gradient; τ, logarithmic temperature gradient; δ, rarefaction parameter; G_{P}, Poiseuille flow; G_{T} thermal creep flow; Q_{T}, Q_{P}. heat fluxes under temperature and pressure gradients, respectively.

LITERATURE CITED

1. B. T. Porodnov, "On the effectiveness of molecular and statistical models of the Boltzmann molecular collision operator I. Poiseuille flow," Manuscript submitted to S. M. Kirov Ukr. Polytech. Inst., Sverdlovsk; Dep. in VINITI, No. 1064-78, 28 March, 1978.
2. B. T. Porodnov, "On the effectiveness of molecular and statistical models of the Boltzmann molecular collision operator II. Thermal creep," Manuscript submitted to S. M. Kirov Ukr. Polytech. Inst., Sveerdlovsk; Dep in VINITI, No. 1780-78, May 30, 1978.
3. B. T. Porodnov, "On the effectiveness of molecular and statistical models of the Boltzmann molecular collision operator III. Thermomolecular pressure difference," Manuscript submitted to S. M. Kirov Ukr. Polytech. Inst., Sverdlovsk; Dep in VINITI, No. 2151-78, 27 June, 1978.
4. R. H. Edwards, "Low-density flows through tubes and nozzles," Proc. of 10th International Symp. In: Rarefied Gas Dynamics, Vol. 1, pp. 199-223, New York (1977).
5. S. G. Skakun, P. E. Suetin, and V. G. Chernyak, "Gas flow and thermomolecular pressure difference in a plane channel," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 179-183 (1974).
6. K. Cherchin'yani, Mathematical Methods in the Kinetic Theory of Gases [in Russian], Mir, Moscow (1973).
7. V. G. Chernyak, V. V. Kalinin, and P. E. Suetin, "Theory of nonisothermal motion of a gas in a plane channel," Inz.-Fiz. Zh., 36, No. 6, 1059-1065 (1979).
8. V. G. Chernyak, V. V. Kalinin, and P. E. Suetin, "Theory of thermomolecular pressure and mechanocaloric effects in a cylindrical channel," Inz.-Fiz. Zh., 37, No. 1, 98 (1979).
9. E. M. Shakhov, Methods of Rarefied Gas Dynamics [in Russian], Nauka, Moscow (1974).
10. F. J. McCormack, "Construction of linearized kinetic models for gaseous mixtures and molecular gases," Phys. Fluids, 16, No. 12, 2095-2105 (1973).
11. T. Abe and H. Oguchi, "A hierarchy kinetic model and its application," Proc. 10th International Symp., in: Rarefied Gas Dynamics, Vol. 2 (1977), pp. 781-793.
12. T. Abe and H. Oguchi, "Higher-kinetic model analysis of cylindrical Couette flows: Proc. 1lth International Sump., in: Rarefied Gas Dynamics, Vol. 1 Paris (1979), pp. 177-186.
13. E. P. Gross and E. A. Jackson, "Kinetic models and the linearized Boltzmann equation," Phys. Fluids, 2, No. 4, 432-441 (1959).
14. M. Abramowitz, "Evaluation of the integral $\int_{0}^{\infty} e^{-u^{2}-x / u^{\prime}} d u$," J. Math. Phys., 32, No. 2-3, 188-192 (1953).
15. Handbook of Special Functions [in Russian], Nauka, Moscow (1979).
16. S. R. De Groot and P. Mazur, Non-equilibrium Thermodynamics, Elsevier (1964).
17. S. K. Loyalka, "Kinetic theory of thermal transpiration and mechanocaloric effect I," J. Chem. Phys., 55, No. 9, 4497-4503 (1971).
18. V. V. Kalinin, E. V. Kalinin, and v. G. Chernyak, "Nonisothermal motion of a binary mixture in a plane channel for arbitrary Knudsen numbers," Sverdlovsk, 1980. Manuscript submitted to A. M. Gor'kii Ukr. State Univ., Dep. in VINITI, May 20, 1980, No. 1962-80.
19. S. G. Mikh1in, Variational Methods in Mathematical Physics [in Russian], Nauka, Moscow (1970).
20. E. M. Shakhov, "On the generalized relaxation kinetic equation of Kruka," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 142-145 (1968).
21. M. N. Kogan, Rarefied Gas Dynamics [in Russian], Nauka Moscow (1967).
22. L. H. Holway, "New statistical models for kinetic theory: methods of construction," Phys. Fluids, 9, No. 9, 1658-1673 (1966).
23. S. Chapman and T. Cowling, The Mathematical Theory of Non-Uniform Gases, 2nd Ed., Cambridge Univ. Press, Cambridge (1952).
24. J. O. Hirschfelder, C. Curtiss, and R. Bird, Molecular Theory of Gases and Liquids, Wiley (1964).
25. J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, Elsevier (1972).
26. S. F. Borisov, B. A. Kalinin, B. T. Porodnov, and P. E. Suetin, "Measurement of the viscosity coefficients of gases by the unsteady flow method;" Inz.-Fiz. Zh., 24, No. 1, 67-69 (1973).
27. Thermophysical Properties of Neon, Argon, Krypton, and Xenon [in Russian], Standartov, Moscow (1976).
28. N. B. Vargaftik, L. P. Filippov, A. A. Tarsimanov, and E. E. Totskii, Thermal Conduction in Liquids and Gases [in Russian], Standartov, Moscow (1978).
29. P. E. Suetin and V. G. Chernyak, "Dependence of Poiseuille slip and thermal creep on the form of the molecular interaction for a gs with a bounding surface," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 107-114 (1977).
30. V. V. Kalinin, E. V. Kalinin, and L. A. Krapivina, "On the effect of the interaction of the molecules with a surface on heat and mass transport in channels," in: Mechanics of Continuous Media. Mechanics of Liquids and Gases, Perm (1980), pp. 40-42.
31. V. G. Chernyak, B. T. Porodnov, P. E. Suetin, et al., "Plane Poiseuille flow for arbitrary accommodation of tangential impulse," Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 107-110 (1973).
32. S. K. Loyalka, N. Petrellis, and T. S. Storvick, "Some numerical results for the BGK model: Thermal creep and viscous slip problems with arbitrary accommodation at the surface," Phys. Fluids, 18, No. 9, 1094-1099 (1975).
33. V. G. Chernyak, A. E. Margilevskii, B. T. Porodnov, and P. E. Suetin, "Effect of interaction of a gas with a surface on thermal creep in a plane channel," Inzh.-Fiz. Z̈h., 28, No. 4, 624-629 (1975).
34. M. N. Kogan and N. K. Makashev, "Flow of a gas in a plane channel with longitudinal temperature gradient at arbitrary Knudsen numbers," TsAGI, 1, No. 2, 69-74 (1970).

STRESSES, VISCOSITY, AND SCALES IN MOLAR TRANSFER
V. F. Potemkin

UDC 532.526

The article presents unified relations describing the profiles of molar stresses and viscosity.

For the calculation of heat and mass transfer in engineering devices it is indispensable to know the distribution of molar stresses and viscosity in the turbulent boundary layer. However, to this day there is no unified relations describing the molar stress and viscosity profiles for complex flow conditions, e.g., in case of a rough surface, the entrance section of a channel, etc. [1].

It is known [1] that in the turbulent core of a two-dimensional steady turbulent boundary layer the terms of the stress tensor satisfy the inequality

$$
\begin{equation*}
\sigma_{u}^{+2}>\sigma_{w}^{+2}>\sigma_{v}^{+2}>\tau^{+} \tag{1}
\end{equation*}
$$

For flow in the boundary layer on a plate, taking (1) into account, we represent σ_{v}^{+2} in the form

$$
\begin{equation*}
\tau^{+}=\sigma_{0}^{+2}-\xi_{v} \sigma_{0}^{+2} . \tag{2}
\end{equation*}
$$

[^0]
[^0]: All-Union Research Institute of Government Patent Expertise, Moscow. Inzhenerno-Fizicheskil Zhurnal, Vol. 46, No. 4, pp. 586-592, April, 1984.

 Translated from Original article submitted January 21, 1983.

